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Abstract. The results of an experiment of impulsive electrodynamics [Eur. Phys. J. D 15, 87 (2001)] are
shown to be due to electrons and ions in run-aways. By fitting the theoretical values with the experimental
data, the values of microscopic quantities, at present unknown, can be derived, thus opening a new field
of research. The obtained quantities are three, namely: (i) the contribution to air ionization due to the
current (mainly of run-aways) and characterized by a parameter ρ; (ii) the product ζ = neinie (where nei

is the number of ions extracted by one electron in run-away and nie the number of electrons extracted by
one run-away ion colliding on the electrodes in electrical discharges with temperatures (for non run-aways)
of � 4×104 K); (iii) the reconstruction time constant T of the high-energy tail of the distribution function,
from which we can derive the concentration per unit time of electrons and ions which become run-aways.
The T value is useful for the theoretical explanation of the electronic noise with power spectral density
inversely proportional to the frequency.

PACS. 05.60.Cd Classical transport – 05.70.-a Thermodynamics – 47.45.-n Rarefied gas dynamics –
51.10.+y Kinetic and transport theory of gases

1 Introduction

Recently, Graneau et al. [1] have performed an interest-
ing experiment of electrodynamics sketched in Figure 1.
A capacitor bank C was charged to a voltage ϕ0 and con-
nected, after a switch S1, to a circuit whose sections are
denoted by 1, 2, 3, 4, 5. Section 1 ends upwards with a bot-
tom gap while Section 5 ends downwards with a top gap.
A mobile section, called armature in reference [1], was
initially placed with air gaps between it and the bottom
electrode. By closing switch S1 the potential difference ϕ0

is applied to the two gaps in series after a very short time
producing a discharge and an electric current through the
circuit. The result is that the mobile armature was found
to have moved upwards by an easily measurable amount
when the length of the bottom gap was smaller than that
of the upper gap.

We refer to a previous paper [2] for the criticism of
Graneau et al. [1] interpretation relevant to their own ex-
periment. Here, we point out that, though the Graneau
experiment was the initial motivation, the present micro-
scopic calculations are meant to generate interest in ex-
traction microscopic quantities, especially relaxation time
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scale, in new generation experiments. The main idea is
that the longitudinal forces that raise the mobile arma-
ture are caused by the collisions of electrons and ions in
run-away, striking the bases of the armature. Since the
majority of these particles are extracted with initially high
transversal velocities by other electrons and ions in run-
away, a large fraction of them can collide on one basis of
the armature if the corresponding gap is very small. If the
gap is large, many run-away electrons and ions escape lat-
erally outside the gap, and the impulses, and consequent
pressure, are smaller than those in the smaller gap. The
theoretical predictions depend on 3 parameters, namely:
(i) the contribution to air ionization due to the current
(mainly of run-aways) and characterized by a parameter ρ;
(ii) the product ζ = neinie (where nei is the number of ions
extracted by one electron in run-away and nie the number
of electrons extracted by one run-away ion colliding on the
electrodes in electrical discharges with temperatures (for
non run-aways) of � 4 × 104 K); (iii) the reconstruction
time constant T of the high-energy tail of the distribution
function, from which we can derive the concentration per
unit time of electrons and ions which become run-aways.
It is therefore sufficient a data fitting with 3 experimen-
tal results to obtain the wanted parameters. Actually, we
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have 15 data and the redundancy improves the accuracy
of the derived values.

As far as we know, there are no other methods that
measure the above three parameters. Modern experiments
that study discharges, especially those based on laser and
imaging techniques, measure atomic spectra, temperature
distributions, ionizations with great accuracy, but they do
not see at all the run-away electrons that are the key of
our explanation. In particular, the laser techniques are
completely unable to determine the time constant T nec-
essary to reconstruct the high velocity tail of the electron
distribution function. The T value is necessary for the ex-
planation of the 1/f noise [3] and, at present, there is a
single paper [4] that tries to formulate theoretically the
problem, without giving the order of magnitude.

The point is that Graneau et al. [1] have performed
their own experiment completely unaware of the capacity
and range of it. We encourage Graneau, Phipps Jr, and
Roscoe to improve their experiment that can open a new
stream of atomic physics. Some manipulations and im-
provements of the experimental data have been done by
us in this paper, which is organized as follows.

In Section 2 we accurately examine the electrical cir-
cuit of reference [1] and, resting on the most reliable
quantities measured in reference [1], we correct the val-
ues of some other quantities. These corrections partially
explain the strong fluctuations in the experimental results
reported in reference [1].

In Section 3, we evaluate the time required to reach
a rarefaction of the air at which the air can no longer be
considered as a macroscopic continuum. This time turns
out to be roughly 1/60 of the period of the underdamped
oscillating current. During this time interval the pressures
in the two gaps are practically the same and there is no
net effect for the impulsive force on the mobile armature.
In this section we use the fraction fT of ionization only
due to the thermal motion at the temperature T , i.e., we
set ρ = 0 where ρ is the first unknown parameter.

In Section 4 we consider the conditions of the air after
the time at which its particulate constitution is predomi-
nant and the mean free paths of many ions and electrons
become larger than the lengths of the gaps. These ions and
electrons are in run-away and, colliding on the electrodes,
extract other ions and electrons with large transversal ve-
locities v⊥, which become new run-aways. Because of their
large v⊥, a much larger fraction of them does not hit one
basis of the mobile armature in the longer gap than in the
shorter gap. The consequent different pressures in the two
gaps is the cause of the net impulse communicated to the
mobile section (or armature) of Graneau et al.’s circuit.

In Section 5 we apply the theoretical results found in
Section 4 to find the net impulse communicated to the
mobile armature by the run-away ions and electrons. The
data fitting with the experimental values allows the deriva-
tion of the two unknown parameters. Actually, the proce-
dure is iterative, i.e., we first find a first order value ρ1

for ρ. Then we recalculate all the quantities already eval-
uated in Section 3 with zero-order approximation. With
the new values we obtain a second order value ρ2 that
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Fig. 1. Sketch of the electrical circuit used by Graneau
et al. [1]. The capacitors C have been charged so as to have a
potential difference ϕ0. Once closed the switch S1 the potential
difference ϕ0 is applied to the two gaps in series after a very
short time t1. Then, after another short time t0−t1 a discharge
across the two gaps make a current I flows in the circuit. The
result is that the mobile section of length 55 mm receives an
impulsive force toward high if the length of the bottom gap is
smaller than that of the top gap.
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Fig. 2. Electrical scheme of the circuit used in reference [1].
A large capacitance C is initially charged with a voltage ϕ0.
When the switch S1 is closed, the voltage across the small
capacitance Cg reaches the value ϕ0 in a very short time t1.
A discharge across the gap represented by Cg is equivalent
to close the second switch S2 having a resistance R in series.
After the closure of S2 we can neglect Cg and the circuit can
be reduced to a series of a capacitor C, an inductor L, and a
resistor R = R1 + R2.

is shown to be the final value (the iterative procedure is
rapidly convergent).

We conclude in Section 6. Moreover, due to the inter-
disciplinary character of the physical subjects involved,
we add two appendices: A — dealing with plasma and
discharge electromagnetic (e.m.) waves attenuation; B —
describing the behaviour of electrons and ions in run-away
conditions.

2 Parameters of the electrical circuit,
and time t0 necessary to produce the initial
discharge

The circuit used in reference [1] and shown in Figures 1
and 2 can be schematized by a large capacitor C, initially
charged with a voltage ϕ0, followed by a switch S1, an
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inductor L in series with a resistor R1, in turn in series
with the two gaps synthesized by a small capacitor Cg

having in parallel a switch S2 followed by a resistor R2(I),
function of the current I in the circuit. After closing switch
S1 the voltage across the two gaps rises to the value ϕ0

after a very short time t1. Then a discharge occurs across
Cg which is equivalent to the closure of switch S2. At this
point the presence of Cg is negligible and the practical
circuit is equivalent to an inductance L in series with a
resistance R = R1 + R2(I), and a capacitance C initially
charged with a voltage ϕ0. The circuit is underdamped
and the current, after the ignition of the discharge can be
represented by a sinusoidal behaviour whose amplitude
decreases exponentially. The power dissipated in the gaps
if R1 � R2(I) � R is expressed by

P = RI2 = P0 exp
(
−2t

τ

)
sin2(ωt), (1)

where
τ = 2L/R, and P0 = Rϕ2

0 C/L. (2)

Before the ignition, the electrical resistance between the
gaps is practically infinite and we have a small capacitance
Cg � 10 pF (due to the gaps and the conductors of the
circuit) in series to the large capacitance C � 6 µF of the
capacitor bank. Consequently, the voltage across the two
gaps reaches the initial value ϕ0 of the capacitor bank in
a time

t1 =
π

2

√
LCg =

π

2

√
LC
√

Cg/C = 1.3 × 10−3 π

2ω
, (3)

which is roughly one thousand of a quarter of the damped
current period.

The electric field E is practically equal in the two gaps
and accelerates the free electrons extracted from the cath-
ode because of tunnel effect through the decreased po-
tential barrier. Once the discharge is ignited, the current
in the two gaps in series is the same. Moreover, before
the formation of the run-aways described in Appendix B,
the cross-sections of the ionized air gaps are the same
and such are their resistivities. Consequently, the accel-
erated free electrons ionize other atoms and an avalanche
is brought about. The space charge of any avalanche is due
to a spherical ball of electrons and to a conical envelope
containing the positive ions. The electric field Ec due to
the space charge of any avalanche on its symmetry axis
is parallel to the external field E outside the avalanche
and antiparallel inside. As the avalanche grows, the to-
tal field E + Eci inside the avalanche decreases until it
practically vanishes. Just outside the avalanche (and on
its symmetry axis), E + Ec � 2E and other free electrons
(produced by photoionization of impurities) in the two re-
gions around the two ends of the avalanche, are strongly
accelerated and bring about other avalanches. When all
the avalanches join together and reach the electrodes, a
high density current (“streamer” process) begins to flow
in the initial ionized channel behaving as a very thin wire
connecting the electrodes. It is this very concentrated dis-
charge that causes the ablations noted in reference [1] and
also a shock wave with gas and discharge expansion.

The time t0 taken to produce the ionized channel, and
therefore to produce the initial discharge, is the sum of t1
given by equation (3) plus the time taken by the streamer
to cross the total length of the two gaps (l = l1 + l2 =
20.5 mm), i.e.,

t0 = t1 + l/vstreamer. (4)

Now the propagation of the streamer is not simply lim-
ited by the drift velocity w(E) where E is the electric
field in the gaps. First, while the avalanches are partially
formed, the electric field outside them increases and, on
an average, it is 2E. Second, the propagation is mainly
due to photoionization, and this implies another factor 3.
Consequently, vstreamer � 6w(E). The drift velocity w is
contained in equation (102) of Appendix A

w =
eE

m

〈
1
νi

− v

3ν2
i

dνi

dv

〉
� 2

eE

m

〈
1
νi

〉
, (5)

e and m being the electron charge and mass, respectively,
νi = νi(v) the electron collision frequency which is domi-
nated by the ion interactions (as shown in Appendix A),
and E the electric field that can be taken as E � ϕ0/l
since, as ϕ decreases until connecting to RI, the distances
between the avalanches decrease. Using the second side of
equation (111), equation (5) yields

w =
17.9ϕ0

√
2πε2

0(kTstreamer)3/2

lN0e3m1/2
, (6)

where ε0 = 8.85 × 10−12 Fm−1 the vacuum permittiv-
ity, k = 1.38 × 10−23 JK−1 the Boltzmann constant, and
Tstreamer � 4 × 104 K the absolute temperature of the
streamer avalanches with our E values. The uncertainty
is of little importance because an 100% error in w, hence
in t0, implies a 1% error in the predictions of the height h
reached by the mobile armature. The value of the initial
concentration is N0 = 2Na where Na = 2.7 × 1025 m−3 is
the air concentration at sea level and at Ta � 300 K, the
factor 2 being due to the immediate dissociation of the
air molecules as soon as the discharge begins. The other
quantities in equation (6) takes the values: l = 2.05×10−2

m, e = 1.6×10−19 C, and m = 9.11×10−31 kg. With those
value for the temperature we obtain w � 1.24 × 104 m/s,
whence from equations (3) and (4) with vstreamer � 6w,

t0 = (8.2 × 10−9 + 2.7 × 10−7) s = 2.8 × 10−7 s, (7)

practically independent of the C values.

3 Evaluation of the time interval
during which the air in the gaps behaves
as a macroscopic continuum

Denoting p1(t) and p2(t) the pressures as functions of
time t in the two gaps, respectively, the net impulse on
the mobile rod (or armature of mass MA) of the circuit is
given by

MAv = πr2
g

∫ ∞

0

dt[p1(t) − p2(t)], (8)
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where rg = 2.38 mm is the radius of the conductors (in-
cluding the mobile rod) delimiting the two gaps. To obtain
p(t) we must also calculate the air molecule concentration
N(t), the air temperature T (t), the velocity V (t) of the
air expansion, the fraction f(t) of the ionized atom, the
expansion velocity of the discharge channel. Fortunately,
the latter quantity can be taken as equal to the velocity
V of the air expansion on the front of the shock wave.
Indeed, as soon as the air density decreases inside the ex-
panding shock wave, the electron mean free paths increase
and the ionization is favoured. We have therefore 5 vari-
ables, namely p, N , T , V , f and we need five equations.
They are: (1) the equation for a perfect gas p = NkT , (2)
the Boltzmann weight factor fT plus the contribution to
ionization due to the current I, (3) the Euler equation of
motion for a perfect fluid, (4) the continuity equation, (5)
the energy balance. Equations (1) and (2) are algebraic
while (3), (4), and (5) are nonlinear differential equations.

3.1 Air as a macroscopic fluid

Let us first treat the air as a macroscopic fluid. As soon as
the electrical discharge is triggered in one gap, the voltage
across it decreases while it increases in the other gap, until
an equal current flows in the two gaps connected in series.
If in these conditions the air temperature in one gap is
smaller than in the other, the ionization decreases, the
electrical resistance R increases so that the power RI2

injected in this gap increases until the two temperatures
in the two gaps become equal. With the same T the two
pressures p1 and p2 are the same so that equation (8)
gives no net effect. However, when the air density N(t)
has dropped around a value that in the next sections we
have estimated to be Na/86, while the temperature T still
remains very high, we must consider the particulate aspect
of the air (ions and electrons) since the more energetic
electrons and ions acquire mean free paths of the same
order as the gap radius rg , practically being in run-away
conditions. At this level, studied in Section 4, it is p1(t) >
p2(t) if l1 < l2 where l1 and l2 are the lengths of gaps 1 and
2, respectively. The aim of this section is only to calculate
the time interval t∗ to reach the particulate aspect. Since
in this first phase p, N , and T are equal in the two gaps,
for simplicity we calculate t∗ for a single gap of length
l = l1 + l2, so as to use the total power P injected in
them.

A gas at high temperature behaves as a perfect gas, so
that we can use

p = NkT. (9)

To the aim of calculating both the run-away current in the
gaps and the energy absorbed in heating the air during the
discharge, we find expressions for the average number of
electrons extracted from one atom and the average energy
per atom necessary to have multiple ionizations. The frac-
tion fTs of ionized atoms in the sth level of ionization and
due only to the temperature T is given by the Boltzmann
weight factor. Consequently, the total number fT of free
electrons per atom (the molecules are practically all disso-
ciated at the discharge temperature) and only due to the

thermal ionization, is given by the sum of the ionization
factors

fT =
∑

s

exp(−εis/kT ) (10)

where εis is the ionization energy of the sth level per one
neutral atom.

The energy required to produce the ionization per
atom at temperature T is expressed by

Ei =
7∑

s=1

εis exp(−εis/kT ). (11)

However, even at the discharge temperatures the second,
third, etc. ionizations per atom are negligible, as shown
by equations (120)–(122) of Appendix B. Consequently, in
the following we only take s = 1. The ionization due to the
current I makes the number f of free electrons increase
until complete ionization is reached asymptotically (for
I → ∞). For nitrogen, complete ionization implies f = 7,
and the very complicated process can be summarized as

f = fT + (7 − fT )
{

1 − exp
[
−1

2
(ρI0)2 exp (−t/τ)

]}
,

(12)
where ρ is an arbitrary parameter to be determined by
data fitting of the theoretical with the experimental re-
sults. We use therefore an iterative procedure, first putting
f = fT in this section, in order to calculate the time t∗
necessary to reach the particulate conditions (where dif-
fusion dominate and we can have run-aways electrons).
Then, in Section 4, we use equation (12) to express the
height h reached by the mobile armature. The data fitting
(performed in Sect. 5) with the experimental data gives a
first order value ρ1 for ρ. With ρ1 we recalculate t∗ and
the other quantities of Section 3, which change in a mod-
est way. The new data fitting with the experimental data
gives a second order value ρ2 with a small difference with
respect ρ1. The use of ρ2 in the expressions of Section 3
leads to a new t∗ and other quantities with no apprecia-
ble difference from those derived with ρ1. The procedure
converges very quickly and we take ρ2 as the final value.

The classical equation of motion for perfect fluids,
called Euler’s equation, is

fm − 1
Nma

∇p =
dV
dt

=
∂V
∂t

+ (V · ∇)V, (13)

fm being the force per unit mass, which can be approxi-
mated, for gravity and small variations of altitude, with
−gêz where g is the gravity acceleration and êz the unit
vector of the vertical z axis. The electrical discharge is
almost vertical and there is axial symmetry along the z
axis so that V = V êr and ∇ = êz(∂/∂z) + êr(∂/∂r).
Consequently, projecting equation (13) on êr, we obtain

− 1
Nma

∂p

∂r
=

∂V

∂t
+ V

∂V

∂r
. (14)

The flux of molecules through a cylinder of fixed radius
r < rg is opposite to the derivative of the molecule number
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contained in it

NV 2πrl = − ∂

∂t
(Nπr2l), (15)

whence we derive the desired continuity equation for any
fixed r value

V = − r

2N

∂N

∂t
. (16)

This result is valid from the Eulerian point of view (fixed
r). If we use the Lagrangian point of view, following the
expanding front, the total number of particles contained
in it is conserved, i.e.,

0 = d(N π r2
F l)/dt, (17)

or
N = N0 (r0/rF )2 = 2Na(r0/rF )2, (18)

where r0 is the initial radius of the columnar discharge,
rF the radius of the expanding front, and N0 = 2Na since
practically all the diatomic molecules (of O2 and N2) are
dissociated inside the discharge, so that as soon as the
discharge is ignited, the initial monoatomic molecule con-
centration is twice the air molecule concentration Na at
room temperature. The advantage of the Lagrangian point
of view is to reduce the differential equation (16) to the
algebraic equation (18).

3.1.1 Energy balance

As said after equation (12), in this section we consider
the ionization as due only to the temperature of the air
(i.e., neglecting the contribution of the electric current),
which implies only some percents of ionization in the first
level, as shown in Appendix B. We take for the εi1 of the
first level an average, weighted value of those of nitro-
gen and oxygen, which turns out to be εi1 = 16.06 eV =
2.25 × 10−18 J. Using equation (11) with only s = 1 [see
what said just after Eq. (11)] and neglecting the room tem-
perature (compared to the very high discharge tempera-
ture), the energy balance applied to a cylinder of radius
r < rg is

P = AσST 4(2πrl + πr2)

+
d

dt

[
Nπr2l (cmmaT + εi1 exp(−εi1/kT ))

]
, (19)

where l = l1 + l2 = 20.5 mm is the total length of the
two gaps, P the injected power. The first term inside the
round brackets in the r.h.s. of equation (19) represents
the radiated power through the lateral surface of the dis-
charge column, σS = 5.67 × 10−8 W/(m2K4) being the
Stefan-Boltzmann constant, A the emission coefficient of
the air. The latter does not depend on the air concentra-
tion N and the absolute temperature T since, as shown
in Appendix A, the attenuation distance of e.m. waves
in the discharge is very small. The second term inside the
round brackets in the r.h.s. of equation (19) represents the
radiated power through the two bases, having assumed a

reflection coefficient 0.5. The first term inside the square
brackets represents the time derivative of the thermal en-
ergy stored inside the discharge, cm � 357 J (kg K)−1

being the specific heat per unit mass of dissociated air
at constant volume [5], and ma = 14.4 (in atomic unit
1.66 × 10−27 kg) the average atomic mass of dissociated
air. The second term inside the square bracket denotes
the time derivative of the ionization (plus excitation and
molecule dissociation) energy of the air neutral atoms.

At the beginning, P is not given by equation (1) since,
when the current is practically zero, all the voltage is ap-
plied to the gap. However, as soon as the discharge begins,
the current is dominated by the inductance, the resistance
R is variable and very high at the beginning of the dis-
charge. But the voltage across the two gaps, expressed
by ϕ = R(I) I, is far from being proportional to the cur-
rent. The voltage, as said just before equation (3), rises to
the maximum value ϕ0 after the very short time t1 and
then decreases as R(I) decreases with the increase of the
current I. A good approximation consists in taking an ex-
ponential relaxation of ϕ until reaching the value RI for a
time t less than an eight of a period, i.e., for t < π/(4ω).
Then, after such time, we take an effective value gradu-
ally decreasing with the time constant 2τ starting from
the value RIeff = RI0/

√
2 which is Rϕ0(C/2L)1/2. We

therefore obtain

ϕ =
[
ϕ0 exp

(
−2.1t

t0

)
+ RI0 sin ωt

]
Θ
(π

4
− ωt

)

+
RI0√

2
exp
(
− t

2τ

)
Θ
(
ωt − π

4

)
, (20)

where Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0, while
t0 is given by equation (4).

We make the same separation for the current, i.e.,

I = I0 sin(ωt)Θ
(π

4
− ωt

)
+

I0√
2

exp
(
− t

2τ

)
Θ
(
ωt − π

4

)
,

(21)
with I0 = ϕ0

√
C/L.

Using equations (20) and (21), the expression of the
power injected into the two gaps is therefore

P (t) = ϕI = ϕ2
0

√
C

L
sin ωt

[
exp
(
−2.1t

t0

)
+

RI0

ϕ0
sin ωt

]

× Θ
(π

4
− ωt

)
+

1
2
Rϕ2

0

C

L
exp
(
− t

τ

)
Θ
(
ωt − π

4

)
, (22)

where, as in equation (20), we have approximated
exp(−2.1t/τ) � 1 for ωt < π/4 since τ � 24π/(4ω). We
see in the following that equation (22) is useful for the
solution of equation (19). Actually, during this phase of
the discharge there is a very rapid variation of T and of
the number f of extracted electrons, while the number
of molecules N = Nπr2l does not change as expressed by
equation (17). Consequently, the third and fourth terms at
the r.h.s. of equation (19) are dominant. We can therefore
use an iterative method, neglecting in first approximation
the first two terms at the r.h.s. of equation (19) in the
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first stage of the discharge, i.e., from t = 0 to t = t0. In-
tegrating equation (19) with the use of equation (22) we
obtain

∫ t0

0

P dt =
ϕ2

0t0
4.41 + ω2t20

√
C

L
[ωt0 − 2.1 exp(−2.1) sin(ωt0)

− exp(−2.1)ωt0 cos(ωt0)]

+
ϕ2

0RC

2Lω
[ωt0 − sin(ωt0) cos(ωt0)]

= Nπr2
0l [cmmaT + εi1 exp (−εi1/kT )] , (23)

where t0 is given by equation (7) and N = 2Na = 5.4 ×
1025 m−3.

In the second phase of the discharge, characterized by
the expansion, equation (22) leads to a slow decrease of
the temperature and the number N of air molecules still
remains constant because of equation (17) until the dis-
charge front rF remains smaller than the gap radius rg.
We can therefore neglect the two terms under differenti-
ation of equation (19), take r = rF so that equation (19)
reduces to

P = AσsT
4 (2πrF l + πr2

F ). (24)

At the beginning of the expansion it is rF = r0 and we
derive from equation (24)

r0 = l

[(
1 +

P (t0)
πAl2σsT 4

)1/2

− 1

]
. (25)

The system of equations (23) and (25) gives r0 and T (r0)
in first approximation. Substituting equation (25) into
equation (23) with N(r0) = 2Na we obtain a transcen-
dent equation in T only. Introducing the numerical val-
ues l = 2.05 × 10−2 m, rg = 2.38 × 10−3 m, Na =
2.7 × 1025 m−3, m = 9.11 × 10−31 kg, e = 1.6 × 10−19 C,
ε0 = 8.85 × 10−12 Fm−1, ma = 14.4 × 1.66 × 10−27 kg =
2.39×10−26 kg, cm = 357 Jkg−1K−1, A � 0.4 (for ionized
air, as evaluated in Appendix A), k = 1.38× 10−23 JK−1,
σs = 5.67×10−8 Wm−2K−4, εi1 = 2.25×10−18 J (equiva-
lent first ionization energy for air: see Appendix B), P (t0)
given by the first term of equation (22) for C = 6.68 µF,
we obtain numerically, for the case l1 = 1 mm,

T (r0) = T0 � 4.24 × 104 K. (26)

With this value, we derive from equation (25)

r0 � 2.14 × 10−3 m = 2.14 mm. (27)

At this point we calculate the energy radiated in the first
stage, supposing T = Qt and keeping the first order values
for t0 and r0. We obtain

∫ t0

0

Aσs(2πr0l + πr2
0)(Qt)4dt = Aσs(2πr0l + πr2

0)
T 4

0

5
t0,

(28)
to be subtracted from the l.h.s. of equation (23). With the
new net injected energy, and keeping the same t0 values

for minimum, intermediate, and maximum values of the
capacitances used by Graneau et al. [1], we obtain

C = 3.34 µF: T0 � 4.44 × 104 K; r0 � 1.88 mm, (29)

C = 6.68 µF: T0 � 4.37 × 104 K; r0 � 1.93 mm, (30)

C = 10.02 µF: T0 � 4.37 × 104 K; r0 � 1.95 mm. (31)

We see that the differences between the extreme cases
(maximum and minimum used capacitances) are very
small. From equation (24) written for rF , T and r0, T0,
respectively, we obtain

T = T0

(
2r0l + r2

0

2rF l + r2
F

)1/4(
P

P (t0)

)1/4

. (32)

3.1.2 Expansion velocity

We have now T as a function of the front radius rF and
of t through P (t). The connection between rF and t(rF )
can be found if we obtain the velocity V of expansion as a
function of rF and T [rF , t(rF )]. Since there are no privi-
leged points inside the discharge, N , T , and p are uniform
from r = 0 to rM = rF − ∆. Then, they have rapid vari-
ations in the small interval ∆, shown in Figures 3a and
3b. The only dependence of V on rF remains to be found.
This can be achieved by solving Euler equation (14). For
r < rM , the expansion velocity V can be taken as propor-
tional to r. Then we take V to go linearly to zero in the
small interval rM ≤ r ≤ rF , as shown in Figure 3c. We
have therefore for r ≤ rM ,

N(r) = N(rM ) = NM ; p(r) = p(rM ) = pM ;
V = rH(t), (33)

while, for rM ≤ r ≤ rF , it is

N =
1
2
(Na + NM )

+
1
2
(Na − NM )

(
r − rM

∆
− t − tF

∆
VM

)
, (34)

V = VM

(
1 − r − rM

∆
+

t − tF
∆

VM

)
, (35)

with the boundary condition p(rF ) = pa. Integrating
equation (14) over r from r0 to rM and using equa-
tion (33), we obtain

0 =
dH

dt
+ H2, (36)

the solution of which is

H(t) = (H−1
0 + t − t0)−1. (37)

Integrating equation (14) over r from rM to rF and using
equations (33)–(35), we obtain

1
ma

(pM − pa) =
∫ rF

rM

dr N

(
∂V

∂t
+ V

∂V

∂r

)

=
1
12

V 2
M (5Na + NM ), (38)
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Fig. 3. Air concentration N [m−3], pressures p [Nm−2], tem-
perature T [K], velocity V [ms−1] vs the radius r [m] of the
cylindrical expansion of the discharge at a fixed time t. The
value rF corresponds to the front of the shock wave and rM is
the preceding value at which the very rapid variations of the
N , p, T , V begin. The distance ∆ = rF − rM is very small
compared to rF and, for simplicity, we approximate the rapid
variations of N , p, T , V inside ∆ by straight segments. Since
there are no privileged points inside rM , it follows that N , p,
T are independent of r for r ≤ rM , while V increases linearly
with r.

which is independent of the ∆ appearing in equations (34)
and (35). We derive from equation (38), with the use of
equations (9) and (18), where we write rM for rF = rM+∆
(in practice it is rF � rM since the thickness ∆ of the wave
front is extremely small)

VM =

{
12k
[
2T (r0/rM )2 − Ta

]
ma[5 + 2(r0/rM )2]

}1/2

, (39)

where T is given by equation (32) and Ta is the ambient
temperature.

For rM = r0, i.e., at the beginning of the expansion, it
is Ta � 2T so that equation (39) reduces to

VM (r0) �
[
24kT (r0)

7 ma

]1/2

� 1.6
(

4kT

3ma

)1/2

= 1.6Vs (40)

which is 1.6 times the speed of sound Vs at the initial
temperature of the discharge. Equating equation (40) to
equation (33) with the use of equation (37) for t = t0, we
find

H0 =
1
r0

[
24kT (r0)

7 ma

]1/2

. (41)

Finally, we derive from equations (33), (37), (39), and (41)

t(rM ) = t0 − r0

[
7 ma

24kT (r0)

]1/2

+rM

{
ma

[
5 + 2(r0/rM )2

]
12k [2T (r0/rM )2 − Ta]

}1/2

, (42)

where T is given by equation (32) with rM for rF .
Since t(rM ) is contained in equation (32) for T , we

should solve this equation that, after eliminating the rad-
icals, turns out to be of the 5th degree and has there-
fore no analytical solution. We solve it numerically setting
rM = rg so as to find the time tg at which the expanding
discharge reaches the gap boundary. We obtain

tg(C = 3.34 µF) � 0.392 µs = 0.0212[2π/ω(C)],
tg(C = 6.68 µF) � 0.380 µs = 0.0151[2π/ω(C)],

tg(C = 10.02 µF) � 0.376 µs = 0.0119[2π/ω(C)]. (43)

After reaching the boundaries of the gaps, the expansion
goes on but the discharge is only inside the gaps. We must
therefore set rF = rg in equation (24) thus deriving from it

T = P (t)1/4
[
Aσs (2πrgl + πr2

g)
]−1/4

. (44)

Substituting equation (44) into equation (39) with rM =
rg, we obtain VM (rg , t). Then from the continuity equa-
tion (16) in Eulerian form and with r = rg, we derive

N(t) = N(rg) exp

[
− 2

rg

∫ t

tg

V (rg , t) dt

]
. (45)

3.2 Air as a non-macroscopic plasma of ions
and electrons

If the expanding gas could be considered as a macroscopic
fluid, all the found quantities would decrease with increas-
ing rM , hence t, until the internal pressure equates the
atmospheric pressure. However, as N decreases, the air
can no longer be considered as a continuous “macroscopic
fluid”, but we must consider its atomic, or better ions and
electrons, composition. The process becomes diffusive on
the front of the expanding discharge. The pressure inside
the gap does not reduce asymptotically to the atmospheric
pressure pa but, until T � Ta = 300 K, there is a diffu-
sion from outside to inside even if p > pa. The flow density
from inside to outside is unidirectional and given by NVM .
Equilibrium is reached when the outflow equates the in-
flow which has an isotropic distribution so that only the
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Table 1. Values of the concentrations N and of the tempera-
tures T , in correspondence of the time t∗ at which the regime
is dominated by diffusion, for different capacitances C.

C (µF) t∗ (µs) N(t∗) (m−3) T (t∗) (K)

3.34 0.589 6.40 × 1023 4.16 × 104

6.68 0.544 6.25 × 1023 4.08 × 104

10.02 0.539 6.22 × 1023 4.03 × 104

component against the outflow is effective. The balance is
therefore

N(t∗)VM (rg) =
∫ π/2

0

dϑ
1
2

sin ϑNav300 cosϑ

=
1
4
Nav300 =

1
4
Na

√
3k 300

ma
. (46)

By means of equations (39), (45), and (46) we obtain
the times t∗ at which the equilibrium expressed by equa-
tion (46) is reached, and the corresponding concentrations
are reported in Table 1.

A good interpolating expression for t∗(C) is

t∗(C) = 0.674 − 0.21 (C/6.68) + 0.08 (C/6.68)2, (47)

where C is measured in µF and t∗ in µs.
The process would become steady-state if T were con-

stant. Actually, T decreases because the electrical current
in the circuit is a damped oscillation with decay time con-
stant τ . Consequently, N(r < rg) starts increasing until it
equates the external density when T → 300 K.

To formulate what said we denote by Ninvin the dif-
fusive inflow and Noutvout the outflow. The quasi steady-
state condition implies, for any r < rg value,

Nout(r)vout(r) + Nin(r)vin(r) = 0 (48)

where, from equation (46), we have

4Nout(rg)vout(rg) � Nav300. (49)

For simplicity we assume vout to be equal to the macro-
scopic velocity V (r, tg) of the previous phase of or-
dered expansion before the diffusive quasi-equilibrium was
reached. We write therefore, by means of equations (33)
and (37), with t = tM � tg given by equation (43)

vout � V =
r

tg − t0 + 1/H0
. (50)

Similarly, we take, using equation (18)

Nout = 2Na(r0/rg)2 (51)

where r0 is given by equations (27)–(31).
The inflow, being purely diffusive, is expressed by

Nin(r)vin(r) = −D
d

dr
Nin(r). (52)

Denoting λ(v) the mean free path, the diffusion coefficient
is given by

D =
1
3
〈λ(v) v〉, (53)

The entering molecules of air practically do not interact
with the much lighter electrons. The entering diatomic
molecules of air split into two atoms but remain practi-
cally neutral. The entering neutral atoms therefore inter-
act almost in the same way with inside neutrals and ions.
It is therefore

λ(v) = λ =
1

σnnNin
=

1
π(2Rat)2

1
Nin

, (54)

where Rat = 6.4 × 10−11 m is the weighted average ra-
dius of an air atom (the empirical values of the atomic
radii are: 65× 10−12 m for nitrogen and 60× 10−12 m for
oxygen, respectively [6]). Substituting equation (54) into
equation (53) and calculating v at the temperature T (rg)
corresponding to the end of the ordered expansion (i.e.,
with rM � rg), we obtain

D =
〈v〉

12πRat
2Nin

=
(2kT (rg)/m)1/2

6π2Rat
2

1
Nin

=
D

Nin
. (55)

We derive from equations (48), (50), (52), and (55)

D

Nin

d

dr
Nin(r) = Nout

r

tg − t0 + 1/H0
. (56)

Separating the variables and integrating both sides from
r to rg with Nin(rg) = Na − Nout, we obtain

N(r) = Nin(r) + Nout = Nout + (Na − Nout)

× exp

[
Nout

r2 − r2
g

2D(tg − t0 + 1/H0)

]
, (57)

with Nout given by equation (51), D by equation (55),
H0 by equation (41), t0 by equations (29)–(31), and tg by
equation (43). The density N(r) of equation (57) is the
wanted expression used near the end of Appendix B.1.

4 Electrons and ions in run-away as the cause
of the net impulse given to the circuit mobile
section of Graneau experiment

The preceding section was useful to find the concentration
N(r), the temperature T , and the time tM � tg necessary
to reach the quasi-equilibrium condition due to back diffu-
sion. However, during that phase the pressures p1 and p2

in the two gaps of Graneau et al. experiment [1] are equal
so that there is no net impulse on the mobile armature (as
denoted by the authors in Ref. [1]). We outline here the
mechanism that leads to a net impulse communicated to
the armature.

When the quasi-equilibrium is reached, N(r) is suf-
ficiently low, while the temperature and the electric field
are sufficiently high, to allow the production of run-aways,
as examined in Appendix C. An electron in run-away hit-
ting an electrode can extract an average number nee of
electrons and a number nei of ions. Similarly, an ion in
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run-away can extract nii ions and nie electrons. However,
the ions extracted by an ion fall on the electrode after de-
scribing a short section of a parabola and are therefore not
effectively contributing to the impulse transmitted to the
armature. Consequently, nii does not matter. Similarly,
for nee. What counts is nei and nie.

As far as we know, there are no experimental values for
those two numbers in the extreme conditions of an electri-
cal discharge. We therefore leave them as two unknowns
to be determined by data fitting with the experimental
results of Graneau et al. experiment [1].

The electrons and ions extracted from the electrode
(because of the impinging on it of either an electron or an
ion) have a distribution of velocities and the more ener-
getic are already in run-away condition. Their trajectory
is parabolic and the probability of impinging on the mo-
bile armature is higher for the smaller gap. In the larger
gap a good amount of electrons (or ions) in run-away can
get out of the gap, so that they do not contribute to the
impulse communicated to the armature. The successive
extractions exalt the impulse differences to the armatures
in the two gaps. The current in the gaps becomes mainly
due to the run-aways and the avalanche process is limited
by the drop of the potential across the two gaps in series.

To formulate in a quantitative way the above process
that lead to a pressure difference [expressed by Eq. (18)]
we proceed as follows. We first find a plausible distribu-
tion for the velocities of the extracted electrons (or ions).
Then we calculate the probability that an extracted elec-
tron (or ion) can impinge on the armature. The point of
extraction is generic and we have to perform an average.
Finally, considering the very large number of successive
extractions, we obtain a convergent geometric series that
depends on the gap width (l1 or l2) and gives the differ-
ences on the impulses communicated to the armature in
the two gaps.

The energy acquired by an electron in traversing a gap
of height l1 is eEl1, the electric field E being equal in the
two gaps in series. An energy balance yields

eEl1 =
1
2
Mu2

0 + Uextr + Ulost, (58)

where M and u0 denote the mass and the speed, respec-
tively, of an extracted ion, Uextr the extraction energy,
and Ulost the energy transformed into thermal energy of
the electrode. Now Uextr is of the order of some eV and is
therefore negligible compared to eEl1 > 200 eV even with
the minimum used height l1 � 1 mm and at the end of the
effective damped oscillation of the current in the circuit.
Ulost is statistical and can range from almost zero to eEl1.
The maximum speed is therefore

u0max =
√

2eEl1/M =
√

2Al1. (59)

A similar reasoning holds for the maximum speed v0max

of an electron extracted by an ion. It is therefore

v0 max =
√

2eEl1/m =
√

2al1. (60)

The distribution function ge(v0, θ) of the extracted elec-
trons has statistically its maximum at v0 � v0 max/2, be-
ing θ the angle between the initial velocity of the extracted

electron and the outward normal to the electrode. For the
θ dependence we approximate as follows. We suppose that
a fraction F of the initial velocities just after an extraction
from an electrode be mainly along the symmetry axis of
the two gaps, denoted as z, while the complement 1−F be
mainly in the plane xy of one of the electrodes. The frac-
tion F can easily be found taking into account that the
angular distribution of the extracted electrons is due to
Coulomb scattering with the screening conditions studied
by Brooks and Herring [7], whose differential cross-section
is expressed by equation (A.15) of reference [8] which reads

σ(v, µs) = C [(1 − µs) + D]−2
, (61)

where µs is the cosine of the scattering angle ϑs and where
C and D summarize quantities independent of the cosine
µs of the scattering angle ϑs. Now D is important to elim-
inate the divergences of the Coulomb scattering at low ϑs

angles, i.e, for µs → 0. However, in our case we consider
angles ϑs > π/2 so that D is negligible. We therefore
approximate the electrons (or ions) extracted with initial
velocities having scattering angles ϑs (with respect to the
impinging electron, or ion) between π/2 and 3π/4 as all
moving in the xy plane (corresponding to ϑs = π/2), while
those with 3π/4 ≤ ϑs < π as moving along the z-axis.
Consequently, 1 −F is proportional to the cross-section

1 −F ∝
∫ 3π/4

π/2

dϑs sin ϑs(1 − µs)−2

=
∫ 0

−2−1/2
dµs(1 − µs)−2

=
[
(1 − µs)−1

]0
−2−1/2 = 0.4142. (62)

Similarly

F ∝
∫ π

3π/4

dϑs sin ϑs(1 − cosϑs)−2

=
[
(1 − µs)−1

]−2−1/2

−1
= 0.0858. (63)

Since 1−F+F = 1, we find the constant of proportionality
and obtain

1 −F = 0.8284; F = 0.1716. (64)

A plausible velocity distribution that accounts for mul-
tiple scatterings is sinusoidal. We can therefore take the
following normalized distribution function of the horizon-
tal velocities v0

gxy(v0) =
0.8284π

2v0max
sin
(

πv0

v0max

)
Θ(v0 max − v0), (65)

where Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0.
Again with the use of equation (64), the distribution

function for the velocities supposed along the z-axis is
given by

gz(v0) =
0.1716π

2v0 max
sin
(

πv0

v0 max

)
Θ(v0 max − v0). (66)
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We first calculate the probability that the fraction of the
electrons with initial velocities parallel to the plane of the
electrode (lying in the xy-plane), reach the other face of
the gap. For those electrons we can still neglect the stray
fields due to the boundary, because the larger loss of those
coming out radially is partially compensated by those
pointing toward the center of the gap, while the radial
stray fields have a negligible effect on the electrons hav-
ing velocities roughly transversal to them. Consequently,
considering E = Eêz, the position of an electron starting
from rêx at t = 0, is expressed by

R(t) = rêx + v0t(êx cosφ + êy sinφ) +
e

2m
E t2êz, (67)

and the time ∆t taken to reach the armature is

∆t = (2ml1/eE)1/2. (68)

The condition that the electron impinges on the armature
(rather than leaving the region of space of the gap) is
obtained imposing that the component of R(∆t) on the
xy plane has an absolute value less than rg. It is

[r2 + v2
0∆t2 + 2rv0∆t cosφ]1/2 ≤ rg, (69)

whence

v0 ≤ vlc =
(

eE

2ml1

)1/2

[(r2
g − r2 sin2 φ)1/2 − r cosφ]. (70)

The average probability of hitting the armature is there-
fore given, with the use of equations (65), (156), and (157),

Pe xy(l, t) =
∫ π

0

dφ
1
π

∫ rg

0

dr r q(r)
∫ vlc(t,r,φ)

v0m

dv0gxy(v0)

=
0.8284

2π

∫ π

0

dφ

∫ rmax

0

dr
2r

r2
max

×
{

cos
(

πv0m

v0 max

)
− cos

[
πvlc(t, r, φ)

v0max

]}
, (71)

where v0 max is given by equation (60), and q(r) is the
radial distribution of run-aways obtained in Appendix B.1
and given by equation (157).

A similar expression is obtained for the probability
Pi(l, t) that an ion reaches the opposite electrode. For-
tunately, the ratios of the velocities appearing in equa-
tion (71) and all the velocities turn out to be inversely
proportional to the square root of the masses, so that

Pi(l, t) = Pe xy(l, t) = Pxy(l, t). (72)

The dependence v ∝ m−1/2 is clear for v0 max and vlc

given by equations (60) and (70), respectively. For v0m,
this conclusion is shown in Appendix B.

Let us now calculate the probability Pz that either
an ion (or an electron) having initial velocity v0 = v0êz

reach the other face of the gap. If there were no stray,
radial fields, all the fraction F [given by Eq. (64)] of these
ions would reach the other face of the gap. In this case

the stray, radial field Er cannot be neglected. Since any
gap face is equipotential, Er(z = 0) = Er(z = l) = 0,
and also Er(l/2) = 0 because of symmetry, we can take a
sinusoidal behaviour for it

Er(r, z, l1) = r̂Er0(r, l1) sin
(

2πz

l1

)
, (73)

where r̂ is the radial unit vector and Er0(0) = 0 because
of symmetry. The dependence Er0(r) has been found ex-
ploiting the results of a previous paper [9]. Consequently,
we obtain

Er(r, z, l1) =
RI0

l
√

2
exp
(
− t

2τ

)
1.7l1/l

1 + 32(l1/l)2 + 6.5(l1/l)3

× sin
(

πr/rg

1 + 2.6l1/l

)
sin
(

2πz

l1

)
. (74)

Because of Er, an ion undergoes a radial displacement
given by

∆r =
∫ ∆t

0

dt

∫ t

0

dt′
e

m
Er(r, z, l1), (75)

where ∆t is the time taken by the ion to traverse the gap
of length l1. The ion impinges on opposite face of the gap if

∆r < rg − r. (76)

As soon as an ion comes out of the cylinder of radius rg , it
finds the atmospheric concentration and loses the largest
part of its momentum against the air molecules.

In order to perform the integration (75) we must ex-
press z as a function of the dummy variable t′. This is
easily obtained if we keep constant Ez = Eêz so that

z = v0t
′ +

e

2m
Et′2. (77)

For simplicity, we keep Er0(r) equal to the value corre-
sponding to the starting r of the ion, and we perform
numerical integration of equation (75) for different l1, r,
and v0 (contained in ∆t) values, thus obtaining, by means
of interpolation,

v0

v0zm(l1, r)
=

[
−8.79 × 10−3 + 1.069

(
r

rg

)2
]

×
[
1.105 − 0.269

(
9 × 10−3 − l1

l

)]
. (78)

The run-away ions (or electrons) reaches the mobile ar-
mature only if v0z ≥ v0zm(l, r). We therefore obtain for
the probability Pz that an ion (or an electron) hits the
armature face if its starting velocity is v0 = v0êz, also
using equations (63), (64), (78), and (157),

Pz(l, t) =
0.1716

2π

∫ rmax

0

dr
2r

r2
max

{
cos
[
πv0zm(l, r)

v0 max

]
+ 1
}

,

(79)
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similar to equation (71) but with v0max [still given by
Eq. (60)] for vlc(t, r, φ) and no dependence on φ.

If nei ions are extracted from the armature by one
electron, the number of run-away ions that reach the op-
posite electrode is nei(Pz +Pxy). Then these ions extract
nienei(Pxy + Pz) electrons and, of these, the fraction

nrun(l1) = neinie[Pz(l1, t) + Pxy(l1, t)]2

= ζ[Pz(l1, t) + Pxy(l1, t)]2 (80)

reaches the armature. The process repeats and, if the fac-
tor nrun < 1, we have a convergent geometrical series so
that the total number of electrons impinging on the arma-
ture and due to an initial electron in run-away is

ntot(l1) = [1 − nrun(l1)]−1. (81)

Because of the symmetry in the subscripts i and e of equa-
tion (80), the same series holds for ions.

The net impulse communicated to an armature by an
electron impinging on it is expressed by

I = mv =
√

2meEl1. (82)

However, during the transit time, there is an attraction of
the considered armature by part of the electron in flight
causing a force eE/2 (the field due to a single armature
is E/2). This reaction force produces an impulse with op-
posite sign with respect to equation (82) given by

Ire = −1
2
eE∆t = −eE

2

√
2l1
a

= −1
2
I. (83)

The net impulse is therefore from equations (82) and (83)

Inet = I + Ire =
1
2
I =

√
1
2
meEl1. (84)

An initial electron produces a total number ntot(l1) of run-
aways given by equation (81), so that the total net impulse
is expressed by

Itot = [1 − nrun(l1)]−1

√
1
2
meEl1, (85)

where nrun(l1) is given by equation (80).
The net average force due to single initial electrons in

run-away is given by Inet times the frequency νb of the
bounces on the considered armature. It is

νb = (∆ti + ∆te)−1 =
[
2l1
eE

(
√

m +
√

M)
]−1

, (86)

so that the net force on the armature on which electrons
(due to a single initial electron in run-away) impinge is

F 1
e (l1) = Itotνb =

eE

2[1 − nrun(l1)]

√
m

√
m +

√
M

. (87)

However, the electric field value E versus time is a damped
oscillation so that E inverts its direction after only half-
period and then ions, instead of electrons, impinge on the

armature. Being the oscillations slowly damped, in first
approximation we may take

F 1
net(l1) =

1
2

[Fe(l1) + Fi(l1)] =
eE

4[1 − nrun(l1)]
, (88)

that is symmetric with respect to ions and electrons.
The total net force on the mobile armature is the dif-

ference of the forces on the two bases of the armature,
i.e.,

F 1
net = F 1

net(l1) − F 1
net(l2)

=
eE

4

[
1

1 − nrun(l1)
− 1

1 − nrun(l2)

]
. (89)

If Irun = dNrun/dt is the total current of run-aways, i.e.
the number of electrons and ions in run-away per unit time
expressed by equation (164), the total net impulse on the
mobile armature is

Γtot =
∫ ∞

t∗
dt Irun

e

4
E0 exp

(
− t

2τ

)

×
[

1
1 − nrun(l1)

− 1
1 − nrun(l2)

]
, (90)

where t∗(C) is given by equation (47).
Finally, MA = 17 g is the mass of the mobile arma-

ture [1], the maximum displacement or height h it would
reach in absence of friction is

h = Γ 2
tot(2M2

Ag)−1. (91)

Our calculations are performed using the damped oscilla-
tions for the current in the circuit given in reference [1],
which implies symmetry between ions and electrons. We
suggest that other experiments of the kind of Graneau
et al. but with an overdamped discharge, imply an asym-
metry between F 1

e (l1) given by equation (88), and the cor-
responding for ions

F 1
i (l1) = F 1

e (l1)
√

M/m. (92)

A dedicated experiment performed in this condition would
be able to discriminate F 1

e (l1) and F 1
i (l1), for example,

using first a strongly damped positive E, and repeating
the experiment using a strongly damped negative E. The
outcome of such a repetition of the Graneau et al. exper-
iment could be used as a test of our theoretical analysis
that predicts that run-aways are responsible for the force
difference on the mobile armature.

5 Data fitting and the iterative procedure

As said in the Introduction, we apply our theoretical re-
sults to find the h values, i.e., the upward maximum
displacements of the mobile armature for different val-
ues of the smaller gap l1 and capacitance C. We use
equation (91), where Γtot is given by equation (90), in
which Irun is expressed by equation (164) and nrun(l) by
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Table 2. Comparison between the theoretical predictions vs.
experimental data for the height h of the mobile rod.

l1 (mm) C (µF) t∗2 (µs) hexp (mm) h (mm)
1.0 3.34 0.588 3 4.2
1.0 5.01 0.561 10.3 11.8
1.0 5.01 0.561 5.8 6.4
1.0 6.68 0.544 16.0 16.3
2.0 3.34 0.588 1.9 2.4
2.0 5.01 0.561 4.1 4.5
2.0 5.01 0.561 3.3 4.3
2.0 6.68 0.544 8.4 8.9
2.0 6.68 0.544 6.6 7.0
3.0 8.35 0.536 11.5 10.8
4.0 6.68 0.544 1.3 1.5
4.0 8.35 0.536 2.8 3.1
4.0 10.02 0.538 3.3 3.0
5.0 6.68 0.544 1.0 0.83
8.0 10.02 0.538 0.6 0.47
10.2 0.0 0.0

equation (80), with Pxy(l, t) and Pz(l, t) given by equa-
tions (71) and (79), respectively, the velocities v0 max, v0m,
vlc, and v0zm being expressed, in order, by equations (60),
(156), (70), and (78). In our equations, there are three
unknown parameters, namely ρ, ζ = neinie, and T , which
are important microscopic quantities at the extreme tem-
peratures and conditions of the electrical discharges, at
present not obtainable by any other method. Actually, ρ,
appearing in equation (12), gives the contribution to the
number f of ionized electrons per atoms due to the current
I; ζ = neinie, appearing in equation (80), is the product
of nei (number of ions extracted by one electron) and nie

(number of electrons extracted by one ion); T , appearing
in equation (164), expresses the relaxation time at which
the small range of speeds just before v0m is practically
reconstructed. Now a ρ value is necessary to calculate the
time t∗ [appearing in Eq. (90)] at which the process of the
run-aways starts. We have therefore adopted an iterative
procedure putting, at zero order, ρ = 0 in Section 3.1,
thus obtaining equation (47). It is with the t∗ given by
equation (47), and used in equation (90), that we have
made a data fitting with the experimental data of Graneau
et al. [1]. We find the correct dependence of h on the value
l1 of the smaller gap, and a good numerical equality to the
experimental data provided the three sought parameters
take the following first order values

ρ1 = 1.46 × 10−6 A−1; ζ1 = 0.21; T1 = 88 µs. (93)

With this ρ1 value in equation (12), and the same proce-
dure of Section 3.1, we find the new t∗2 values that can be
expressed by

t∗2(C) � 0.672− 0.206(C/6.68) + 0.078(C/6.68)2, (94)

where C is measured in µF and t∗2 in µs.
We see that the t∗2 values given by equation (94) differ

of only some percents from those given by equation (47).
With the new t∗2, the data fitting with the experimental
data is shown in Table 2, and the second order values of

the three important microscopic parameters are

ρ2 = 1.41 × 10−6 A−1; ζ2 = 0.22; T2 = 86 µs. (95)

We see that these values little differ from those of equa-
tion (93), showing that our iterative procedure converges
very rapidly.

The found T value deserves a comment. The usual
relaxation time in the case of binary collisions between
electrons and atoms (either neutral or ionized) is of the
order trelax = ν−1(vm)M/(2m), where ν−1(vm) has to be
taken in correspondence of roughly twice the minimum
value vrm to have run-aways and given by equation (159)
of Appendix B.2. With the value vrm = 3.02 derived four
lines after equation (162), and the use of equation (104)
of Appendix A with vr = 2vrm, we derive

ν−1(2vrm) � 10−11 s. (96)

Consequently, with M/2m � 1836 × 7 � 104 we obtain

trelax binary � 10−7 s. (97)

To have found the value given by equation (95) means that
triple collisions are necessary to reconstruct the high ve-
locity tail of the electron distribution function. Obviously,
binary collisions are widely dominant for lower v values,
i.e., for 0 ≤ v ≤ 1.8〈v2〉1/2. Actually, as calculated in
Appendix B, the minimum value to have run-away elec-
trons, is v0m = 2.45 × 106 m/s, while, at the discharge
temperature � 4 × 104 K, it is 〈v2〉1/2 = (3kT/m)1/2 =
1.35 × 106 m/s, so that v0m/〈v2〉1/2 � 1.8.

6 Conclusions

It would have been practically impossible to conceive an
experiment as the one performed by Graneau et al. [1]
in order to derive the three microscopic parameters ρ,
ζ = neinie, and T . It is a case of “heterogenesis of aims”.
Actually, Graneau et al. [1] devised their own experiment
to validate Ampère’s expression, but the correct, although
rough, interpretation [2] of their effect, has on the contrary
validated the standard formula of Grassmann. The point
is that the much deeper (with respect to Ref. [2]) inter-
pretation given in this paper includes the above three pa-
rameters that has been determined by data fitting. Notice
that the experimental points are 15, so that the agreement
with the two main dependences, namely on the smaller
gap length l1, and on the maximum amplitude I0 of the
current (related to the value of the capacitance C), are a
proof of the correctness of our interpretation. Let us clar-
ify this point. The dependence of the maximum upward
displacement h of the mobile armature on I0 (or on C) is
determined by the expression of the number f of extracted
electron per atom. The general expression is rather easy to
be devised because it must reduce to the thermal expres-
sion fT for I0 → 0, and must be limited to 7 (number of
electron of one atom of nitrogen) for I → ∞. The wanted
expression is equation (12) where an unknown parameter
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ρ appears. It is very difficult to find ρ theoretically so that
we have left it as one of the three unknown parameters.
The data fitting has given ρ = 1.41 × 10−6 A−1 (since ρI
must give a number, and I is measured in A, then the
dimension of ρ is in A−1).

The dependence of h on l1 is correctly given by our
theory based on the run-away electrons and ions. An un-
known parameter contained in it is ζ = neinie where nei

(or nie) is the number of ions (or electrons) extracted from
an electrode by one electron (or ion). In the extreme con-
ditions of the electrical discharge there have been so far
neither theory nor experiment able to determine it. Our
data fitting has produced ζ = neinie = 0.22. In Section 4
we have also suggested a modified version of the Graneau
et al. [1] experiment by which it would be possible to sep-
arately derive nei and nie.

The third parameter we have obtained is the average
time T of relaxation to reconstruct the high energy tail of
the electron distribution function. We have found a sin-
gle paper [4] that gives information in the case of cross-
sections ∝ v−1 (hence constant collision frequency ν), and
∝ v−3 (hence ν ∝ v−2), which are never found in any
material in all the v range. Our data fitting have given
T � 8.6 × 10−5 s [as given by Eq. (95)], i.e., a rather
long time compared to the relaxation time for binary col-
lisions which, in discharge conditions, is of the order 10−7

s, as given by equation (97). This is a sign that at least
triple collisions are required to produce the high velocities
in the distribution function. Actually, with binary colli-
sions between particles having the same mass, we have
at maximum (for head-on collisions) an exchange of their
speeds. To gain speed, an electron has to collide against
two other electrons having roughly the same velocities.
Our result is therefore sensible. We stress that no other
method or theory is at present able to give the order
of magnitude of T , not even in principle. At first sight
one could think that modern experiments that study dis-
charges, especially those based on laser and imaging tech-
niques, could produce good values for the three param-
eters we have obtained. Actually, the laser experiments
are far superior than any electro-mechanical experiment,
primarily because of timing and spatial resolutions. But
they are “blind” with respect to run-away electrons, while
Graneau et al. experiment detects them (practically, it
“sees” only run-away electrons). Perhaps, in some indirect
way the laser experiments could give some values regard-
ing the first two parameters, ρ (regarding the additional
ionization due to the electric current), and ζ [number of
ions (electrons) extracted by one electron (ion)]. But it
seems that they are unable in principle to produce any
T value. The latter is also the most important, because
it is required in the theory, we have just developed [3],
that explains for the first time the long standing prob-
lem of the practically infinite memory of a fluctuation in
the conduction current. The correlation function decays
as t−0.005 leading to a power spectral density of the fluc-
tuating conductance G given by

SG(ω) =
G2αε

2πNω−0.995
, (98)

where N is the number of electrons between the sample
electrodes, ω the angular frequency, and αε a coefficient
that, differently from Hooge’s empirical formula, depends
on the electron concentration N . It is this dependence,
together with the T value given in this paper, that leads
to a close fitting with the experimental data.

We again encourage Graneau and collaborators to im-
prove and modify their experiment whose correct inter-
pretation can open a new stream of research.

Appendix A: Plasma conductivity σ
and attenuation distance δ of e.m. waves
during the discharge

In order to calculate the coefficient A appearing in equa-
tion (19) we must evaluate the attenuation length δ in the
ionized air during a discharge.

The attenuation of a plane wave may be expressed in
terms of the real and imaginary parts of the wave number
k, by equation (7.53) of reference [10]

k = β + iα/2 (99)

where the parameter α is known as the attenuation con-
stant or absorption coefficient. The intensity of the wave
falls off as exp(−αx).

If the fields associated with the radiation vary in space
and time as exp[i(k ·x−ωlt)], the wave number k is given
by the complex expression (7.68) of reference [10] (here
translated into the International System)

k =
√

µε
ωl

c

(
1 + i

σ

ωlε

)1/2

, (100)

ε being the dielectric constant, µ the permeability, and
σ the conductivity. Comparing equation (99) with equa-
tion (100), and translating equation (7.69) of reference [10]
into the International System [11], it follows that

α =
ωl

c

√
2εrµr

⎡
⎣
√

1 +
(

σ

ωlε0εr

)2

− 1

⎤
⎦

1/2

, (101)

where ε0 is the vacuum permittivity and, for a plasma,
εr � µr � 1. The conductivity can be related to the drift
velocity w for electrons via [12]

j = σE = New = Ne
eE
m

〈
1
ν
− v

3ν2

dν

dv

〉
, (102)

where N is the concentration, ν the collision frequency
for momentum transfer, and the sign of average means
that the enclosed expression has to be averaged over the
normalized distribution function of the thermal speed v
of electrons. The total collision frequency ν for momen-
tum transfer appearing in equation (102) is the sum of
three contributions, namely, the electron-ion contribu-
tion νi, the electron-atom contribution νa, and the photon-
scattering contribution νp

ν = νi + νa + νp. (103)
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The νi for electrons in ions is given by the Brooks-Herring
expression and we refer to Appendix A.3 of reference [8]
for recent calculations. The final expression, taken from
equation (A.19) of reference [8] is

νi =
Ne4

8πε2
0m

2v3
r

( m

2kT

)3/2
[
ln(1 + b) − b

b + 1

]
, (104)

where vr is the reduced speed

vr = v (m/2kT )1/2
, (105)

and b is given by equation (A.16) of reference [8]

b =
4ε0kTm2v2

�2e2N
=

8ε0m

�2e2N
(kT )2 v2

r . (106)

The collision frequency for momentum transfer given by
equation (104) is not valid for b < 10 and implies a non-
physical divergence for vr → 0. We should limit it to
b ≥ 10 and then use the convenient extrapolation given
by equation (A.20) of reference [8]. However, since we are
interested in the 〈1/νi(v)〉 appearing in equation (102)
and in the drift velocity, given by equation (5), we can
use equation (104) since the tail for vr → 0 (which implies
the divergence of νi) gives an almost negligible difference
to the average with respect to the result derivable from
equation (A.20) of reference [8].

As shown in Appendix B, practically each atom is
singly ionized so that we have put Z = 1 in equa-
tion (A.19) of reference [8]. The effective mass m∗ in solids
is here the electron mass m. At the beginning of the dis-
charge, before the air in the gaps expands, the molecule
concentration is twice the atmospheric one since all the
diatomic air molecules are immediately dissociated in two
monoatomic molecules

N0 = 2Na = 5.4 × 1025 m−3, (107)

so that equation (106) becomes, with the “a posteriori”
estimated value for the average discharge temperature
T � 4.2 × 104 K [as given by Eq. (26)]

b = 1.42 × 103 v2
r . (108)

For simplicity, we take a Maxwellian distribution at
the temperature calculated in Section 3 (the Chapman-
Cowling-Davidov distribution does not take into account
the losses due to radiation)

f0(v) =
( m

2πkT

)3/2

exp
(
−mv2

2kT

)

=
( m

2πkT

)3/2

exp
(
−v2

r

)
. (109)

We obtain therefore
〈

1
νi

〉
=
∫ ∞

0

dv4πv2f0(v)ν−1
i = 64ε2

0(2πm)1/2 (kT )3/2

N0e4

×
∫ ∞

0

dvrv
5
r exp

(
−v2

r

) [
ln(1 + b) − b

b + 1

]−1

. (110)

Numerical integration of equation (110) with the use of
equation (109) leads to
〈

1
νi

〉
= 8.94ε2

0(2πm)1/2 (kT )3/2

N0e4
� 2.09×10−14 s. (111)

The average collision frequency 〈νi
−1〉−1 � 4.8×1013 s−1.

Up to a temperature T < 1000 K, the average collision
frequency νa with atoms considered as neutral is

〈νa〉 = 〈Nπr2
atv〉 � 7 × 1012 s−1, (112)

which is smaller than the ion-electron collision frequency
νi even at small temperatures. For T > 1000 K the neu-
tral atom-electron collision frequency decreases until it be-
comes negligible at the ionization temperature.

To calculate νp with photons we must calculate the
average amplitude E of the electric field of the radiating
light. At the discharge temperature � 4.2 × 104 K, the
energy density U of the e.m. radiation field can be de-
rived from the Stefan-Boltzmann law prad = σT 4 and the
relationship prad/c = U , i.e.

U = ε0E
2 = σT 4/c � 588 Jm−3, (113)

whence

E =
(

588
8.85 × 10−12

)1/2

= 8.2 × 106 Vm−1. (114)

The variation of velocity in half a period π/ωl, where ωl

is the angular frequency of the radiating light we take in
correspondence of the maximum of the Planck curve, i.e.,
ωl � 1016 s−1, is

∆v � eE

m

π

ωl
� 450 ms−1, (115)

which is therefore much smaller than the average thermal
speed of an electron at the discharge temperature, that is
〈v2〉1/2 � 1.4 × 106 m/s. It follows that the collision fre-
quency νp is negligible compared to the collision frequency
with ions, which is practically the only one effective at high
temperature. We therefore take equation (104) as the total
collision frequency. It is therefore ν ∝ v−3 and, substitut-
ing equations (104), (107), and (111) into equation (102),
we obtain

σ � 2N0
e2

m

〈
1
νi

〉
= 6.35 × 104 m−1Ω−1. (116)

The term inside the square root of equation (101) takes
therefore the value, for blue light for which λ � 0.5 µm,
whence ωl = 2πc/λ � 3.8 × 1015 s−1,

σ

ωlε0
� 1.9. (117)

Substituting equation (117) into equation (101) we obtain
the attenuation distance

δ = α−1 = 5.24 × 10−8 m. (118)
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We have this small value at the beginning of the discharge.
Even when, because of the expansion, N = N0/86, we
have

δ � 3.6 × 10−6 m � rg. (119)

The plasma remains always opaque and the radiation
comes practically from the external surface of the dis-
charge column, as expressed in equation (19). The coeffi-
cient A appearing in equation (19) is practically constant
and, for air, it is A � 0.4 (roughly 0.4 of the value for a
black body).

Appendix B: Number of electrons and ions
in run-away that impinge on the face
of the mobile section

We begin to calculate the ratio Ni/Ne, where Ni and
Ne are the concentrations of the ions and free electrons,
respectively. As soon as the discharge starts, the air
molecules are split into atoms which are partially ionized.
If the atoms were singly ionized it would be Ne = Ni. If
twice ionized Ne = 2Ni. The fraction fT of ionized atoms
is given by equation (10). The first ionization energies
for oxygen (O) and nitrogen (N) are εiO1 = 13.62 eV =
2.18× 10−18 J and εiN1 = 14.53 eV = 2.33 × 10−18 J, re-
spectively [13]. (It is 1 eV= 1.60219× 10−19 J, equivalent
to a temperature Teq = 1.1605×104 K.) For the minimum
(C = 3.34 µF) and maximum (C = 10.02 µF) values of ca-
pacitance, the peak temperatures range from 4.34×104 K
to 4.37×104 K. Then equation (10) leads to the following
ranges for fTs relevant to O and N, respectively. For s = 1
(first ionization) we obtain

0.026 ≤ fTO1 ≤ 0.027;
0.020 ≤ fTN1 ≤ 0.021. (120)

The energies of second ionization are εiO2 = 35.12 eV =
5.62 × 10−18 J and εiN2 = 29.59 eV = 4.74 × 10−18 J,
respectively. The corresponding ranges for f are

8.4 × 10−5 ≤ fTO2 ≤ 8.9 × 10−5;
3.6 × 10−4 ≤ fTN2 ≤ 3.9 × 10−4, (121)

respectively. Comparing equation (120) with equa-
tion (121) we obtain

3.2 × 10−3 ≤ fTO2/fTO1 ≤ 3.3 × 10−3;
1.8 × 10−2 ≤ fTN2/fTN1 ≤ 1.9 × 10−2. (122)

Since the above ratios are less than two percents, we can
take Ni � Ne.

For simplicity, in the main text we have taken a sin-
gle, effective value for the ionization energy of an “air”
atom, so as to obtain the same value of the total ioniza-
tion for oxygen and nitrogen taking into account their first
and second ionization energies and their ratio in air. The
effective value is εi = 14.06 eV = 2.25 × 10−18 J.

To calculate the electron and ions in run-away we need
the values of their mean free paths, related to the collision

frequency νc. Notice that the collision frequency of interest
in this case is not the νi given by equation (104), which is
the one relevant to the momentum transfer and has been
integrated over the cosine µsc of the scattering angle θsc.
We are here interested in the collision frequency given by
equation (22) of reference [8] we report here

νc =
Ne4

16π2ε2
0g

3m2
r

(
1 − µsc +

�
2β2

s

2g2m2
r

)−2

, (123)

where N is the concentration for either ions or electrons,
e the electron charge, ε0 the vacuum permittivity, g the
absolute value of relative velocity, mr the reduced mass,
µsc = cos θsc the cosine of the scattering angle, � the re-
duced Planck constant, and

β2
s =

Ne2

ε0kT

F−1/2

F+1/2
, (124)

F−1/2 and F+1/2 being the Fermi-Dirac integrals. The col-
lision frequency νc is very high at small θsc corresponding
to µsc � 1. However, small deviation are ineffective for
our purposes of calculating the deviations of trajectories,
so that we eliminate the scattering angles between 0 and
∼ 30◦. The average νc value in the remaining θsc interval
corresponds to θsc � π/2, i.e., to µsc = 0. For simplic-
ity we take this value which is just what assumed in the
simplified distribution g2(v0) given by equation (65). Con-
sequently, we take as effective mean free path

λ =
g

νc
� 16π2ε2

0g
4m2

r

Ne4
, (125)

having neglected the third term inside the round bracket
of equation (123) since it is � 1. Taking into account
that, because of axial symmetry, there is the weight sin θsc

which is maximum for θsc = π/2 corresponding to µsc = 0,
we can take the expression given by equation (125) for any
θsc value. In the case of electron-ion scattering, the relative
speed g is practically equal to the electron speed v, and
the reduced mass mr is quite close to the electron mass
m. Consequently, equation (125) becomes

λe−ion � 16(πε0m)2

Ne4
v4. (126)

For electron-electron scattering, mr = m/2 and consider-
ing equal velocities v for the two colliding electrons,

〈g4〉θsc =
∫ π

0

dθsc
1
2

sin θsc(v2 + v2 − 2v2 cos θsc)2 =
16
3

v4,

(127)
so that equation (125) becomes, with the use of equa-
tion (127),

λe−e �
32(πε0m)2

Ne4
v4. (128)

The collision frequencies due to both e-e and e-ion scatter-
ings add each other so that the resulting free path, being
the concentration N of electrons equal to that of the ions,
is given, with the use of equations (126) and (128), by

λe =
λe−ionλe−e

λe−ion + λe−e
� 32 (πε0m)2

5Ne4
v4. (129)
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When an ion interacts with an electron it does not prac-
tically deviate. What is effective is the ion-ion scattering
whose mean free path λion−ion turns out to be equal to
λe−e given by equation (128) (now with the ion mass M
and velocity u for m and v).

We can now calculate what is the minimum value of
the initial velocities so that the mean free paths overcome
the lengths of the gaps. At first sight it would seem that
this condition is very different for the smaller gap (mea-
surements performed by Graneau et al. [1] down to l1 = 1
mm) than for the larger gap (up to � 20 mm). The point
is that the electric field in the gaps is very high. The value
of the electric field E can be derived from equation (2)
and is

E =
RI

l
=

R

l

(
〈P 〉
R

)1/2

=
R

l
ϕ0

√
C

2L
exp
(
− t

τ

)
,

(130)
where l = 2.05 × 10−2 m. For C = 6.68 µF and t = tg
given by equation (43) we obtain E(tg) � 1.4× 105 V/m.
With this high E values, as soon as an electron (or an ion)
mean free path λe overcomes 0.2 mm in the field direction,
its acquired energy is � 26 eV, roughly five times the av-
erage energy at the beginning of the discharge (� 4.6 eV).
Since λe ∝ v4

r [as given by equation (129)] and v2
r ∝ E,

its λe becomes 100 times the initial value 0.2 mm, that
is 20 mm, the length of the larger gap. Actually, after
λe > 2 mm the energy that it could acquire with the same
conditions would be 100 times the initial energy, and λe

would become 104 × 0.2 mm = 2 m. In other terms, the
electron becomes collisionless and acquire more and more
energy from E. This condition is called “run-away”. Con-
sequently, as soon as an electron becomes run-away, its
mean free path increases indefinitely. Let us evaluate the
fraction, or probability pr, of the run-away electrons.

To obtain the minimum initial speeds that lead to run-
aways we proceed as follows, distinguishing different cases.

B.1 Minimum initial speed v0m to have run-aways
for electron extracted parallel to the bases of the gaps

Having assumed the simplified distribution g2(v0) given
by equation (65) of the initial velocities v0 with v0 · a = 0
(transversal velocities with respect to the acceleration a),
the velocity acquired by an electron after time t is

v2 = v2
0 + a2t2. (131)

The minimum initial speed v0m is obtained imposing that
the acquired speed v in a mean free time 〈t〉(v0m) be such
that the corresponding λe is equal to the total length l of
the gaps, i.e.,

v2 = v2
0m + a2〈t(v0m)〉2, (132)

where v can be derived from equation (129) where we set
λe = l,

v =
[

5Ne4l

32(πε0m)2

]1/4

. (133)

The mean free time 〈t〉 corresponding to v0m is obtained
from

λm =
∫ 〈t〉

0

dt (v2
0m + a2t2)1/2 =

〈t〉
2

√
v2
0m + a2〈t〉2

+
v2
0m

2a
sinh−1

(
a 〈t〉
v0m

)
. (134)

In all our cases we find v0m < v/2.5 so that the second
term of the last side of equation (134) is less than 0.3 times
the first term. Neglecting it for simplicity, we obtain

〈t〉 = 2λm/v. (135)

We can assimilate the mean free path λm to the λe given
by equation (129), corresponding to v = constant = v0m.
Substituting equations (129) and (135) into equation (132)
we obtain

v8
0m + v2

0mq − v2q = 0, (136)

where

q =
v2

4a2

[
5Ne4

32(πε0m)2

]2
. (137)

Setting v2
0m = x we obtain an equation of fourth degree

in canonical form

x4 + px2 + qx + r = 0 (138)

where

p = 0, q as given by equation (137), r = −qv2. (139)

The connected equation of third degree (Euler’s resolvent)
is in our case

z3 +
q

4
v2z − q2

64
= 0, (140)

whose solutions are

z1 = Y − qv2

12Y
, (141)

z2 = Y exp
(

i
2π

3

)
− qv2

12Y
exp
(
−i

2π

3

)

= η exp(i arctanZ) (142)

z3 = Y exp
(
−i

2π

3

)
− qv2

12Y
exp
(

i
2π

3

)

= η exp(−i arctanZ) (143)

where

Y =

⎧⎨
⎩

q2

128
+

[(
q2

128

)2

+
1
27

(q

4
v2
)3
]1/2

⎫⎬
⎭

1/3

, (144)

η =

[
Y 2

(
qv2

12Y

)2

+
qv

12

]1/2

, (145)

Z = −1.732
z1

(
Y +

qv2

12Y

)
(146)
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The solution of equation (138) is then

x =
√

z1 +
√

z2 +
√

z3, (147)

with the signs of the radicals determined by the condition
√

z1
√

z2
√

z3 = − q

8
. (148)

Precisely, being z2 and z3 complex numbers, we denote

y1(k = 0) = z
1/2
1 exp

(
i
2kπ

2

)
=
(

Y − qv2

12Y

)1/2

, (149)

y1(k = 1) = −z
1/2
1 exp (ikπ) = −

(
Y − qv2

12Y

)1/2

, (150)

y2(k = 0) = η1/2 exp
(

i

2
arctanZ

)
, (151)

y2(k = 1) = η1/2 exp
[
i

(
π +

1
2

arctanZ

)]
, (152)

y3(k = 0) = η1/2 exp
(
− i

2
arctanZ

)
, (153)

y3(k = 1) = η1/2 exp
[
i

(
π − 1

2
arctanZ

)]
. (154)

Since x = v2
om > 0, there is only one positive real solution

given by

x = v2
0m = y1(k = 1) + y2(k = 0) + y3(k = 0). (155)

Finally, with the use of equations (150), (151), and (153)
we obtain

v0m =
√

x =
[
−z

1/2
1 + 2η cos

(
1
2

arctanZ

)]1/2

, (156)

where z1 is given by equation (141), η by equation (145),
and Z by equation (146).

Reading from Table 1, for C = 6.68 µF, we have
N(r = 0, t = t∗) = 6.25×1023 m−3, and, with the E value
just after equation (130), a(t0) = eE/m = 2.5×1016 ms−2

so that, with l = 20.2 × 10−3 m, we derive v = 6.7 ×
106 ms−1 from equation (133), q = 1.78 × 1028 m6s−6

from equation (136), Y = 2.59 × 1025 m4s−4 from equa-
tion (144), z1 = 1.91 × 1023 m4s−4 from equation (141),
η = 2.58 × 1025 m4s−4 from equation (145), Z = −468
from equation (146). By these values we obtain from equa-
tion (156) v0m =

√
x = 2.45×106 ms−1. We have taken, in

the above example, N = N(r = 0, t∗) = 6.25 × 1023 m−3.
If we take N ′ = 1.2N(r = 0, tg) = 7.5 × 1023 m−3

we obtain v′0m = 5.13 × 106 ms−1 > vmax lc. If we take
N ′′ = 1.1N(r = 0, tg) = 6.87 × 1023 m−3 we obtain
v′′0m = 3.38× 106 ms−1 which gives a small value for Pe xy

and Pz expressed by equations (71) and (79), respectively.
Consequently, since N(r) given by equation (57)

rapidly tends to N(r = 0, tg) for small r − rg values, we
take that the source of run-away is uniform from r = 0 to
rmax at which N = 1.1N(r = 0, tg), and then 0, i.e., the
distribution q(r) appearing in equation (71) is given by

q(r) =
2

r2
max

Θ(rmax − r). (157)

B.2 Numerical run-away current

We first evaluate the fraction, or probability pr, of the run-
away electrons. Let us denote by t the flight time and by
θ the angle between the initial velocity v0 of an electron
just after a scattering and its acceleration a = eE/m. The
velocity v acquired after t by an electron in uniformly
accelerated motion is

v2 = v2
0 + a2t2 + 2av0t cos θ. (158)

For θ > π/2 the velocity v decreases (with respect to v0),
λe becomes shorter and a collision interrupts a possible
run-away. For 0 ≤ θ ≤ π/2 it is v(t) > v0 and if the
electron succeeds to become a run-away for θ = π/2, to
a greater extent it succeeds if θ < π/2. We take as the
minimum value to have run-aways the v0m expressed by
equation (156). Here it is convenient to use its relative
value as given by equation (105), i.e.,

vrm = v0m [m/2kT (t ≥ t0)]
1/2

. (159)

Consequently, we calculate the probability pr to have run-
aways as half the number of electrons with initial re-
duced velocities [defined by equation (105)] larger than
the minimum value vrm to have run-aways. It is, taking a
Maxwellian distribution of velocities

pr =
2√
π

∫ ∞

vrm

dvr v2
r exp(− v2

r )

=
1√
π

vrm exp(− v2
rm) +

1
2
erfc(vrm), (160)

where the normalization is assured by

1 =
4√
π

∫ ∞

0

dx x2 exp(−x2). (161)

The factor 2 in the intermediate step of equation (160),
instead of the 4 of the second step of equation (161), is due
to having taken half of the electrons. Indeed, since the elec-
trons velocities are practically isotropically distributed, to
have assumed as effective the v0 forming with a an angle
0 ≤ θ ≤ π/2 means to take, as effective, half the number
of electrons.

The number of run-aways in the two gaps is therefore

N = 2prfNout r2
g(l1 + l2), (162)

where the factor 2 implies the sum of electrons and ions
and f the number of free electrons due to ionization and
given by equation (12).

For C = 6.68 µF it is Nout = 3.55 × 1025 m−3,
T (t∗) = 4.08 × 104 K, so that we derive vrm = 3.06
from equation (159), pr � 0.127 from equation (160), and
N � 5.16 × 1016 from equation (162).

The point is: in how much time do the electrons and
ions reconstruct the high energy tail of the distribution
function for v ≥ v0m? Actually the N electrons and ions
that becomes run-away are rapidly swept away by the
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electric field E. What is important is therefore the relax-
ation time T at which the small range of relative speeds
(1 − δ)v0m ≤ v ≤ v0m is practically reconstructed. Then
the run-away current is

Irun =
dN
dt

� N
T . (163)

To find T theoretically is extremely difficult and the error
can be very large. We therefore leave T as the third un-
known parameter to be determined by data fitting. With
the use of equations (162) and (163), the run-away current
is therefore expressed by

Irun =
2
T prfNoutrg(l1 + l2), (164)

where pr is given by equation (160), f by equation (12),
and Nout by equation (51).
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